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Dynamics of globally coupled bistable elements
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The macroscopic dynamics of a large set of globally coupled, identical, noiseless, bistable elements is
analytically and numerically studied. Depending on the value of the coupling constant and on the initial
condition, all the elements can either evolve towards the same individual state or become divided into two
groups, which approach two different states. It is shown that at a critical value of the coupling constant the
system undergoes a transition from bistable evolution, where the two behaviors described above can occur, to
coherent evolution, where the convergence towards the same individual state is the only possible behavior.
Connections of this system with the real Ginzburg-Landau equation and with the sociological problem of
opinion formation are discussef$1063-651X97)10505-0

PACS numbg(s): 05.20-y, 05.70.Fh, 87.16-¢e, 89.90:n

I. INTRODUCTION in the study of critical phenomena under the effects of exter-

N . nal noisg 11]. Internal deterministic noise has also been con-
The study of complex behavior in extended systems i%i d11]

based h vsis of | f ol h : ||dered in systems of coupled chaotic elements with similar
ased on the analysis of large sets of elements whose loc mmetry propertie§l2]. In this frame, it has been shown

dynamics is coupled through some interaction mechanismya; 5 ferromagneticlike transition occurs as the noise

Much effort has been devoted in the last two decades 10 thgyrength is varied. The same models, added with suitable
investigation of extended systems with short-range interacharmonic forcing, have been very recently studied in connec-
tions, whose main manifestations of complex behavior are byign with stochastic resonance in extended systEmsE In
now well understood. Reaction-diffusion systems constitutehis paper, instead, the attention is focused on qualitative
the paradigm of this problem. More recently, other couplingchanges in the macroscopic behavior of a set of noiseless
mechanisms—in particular, global couplifgl—have also bistable elements upon variation of the coupling strength. In
been considered. Global coupling plays a relevant role irSec. Il, the mathematical model is presented and it is sug-
models of many real systems driven by long-range interacgested that a critical phenomenon takes place as a coupling
tions, able to generate strong correlations between highlgonstant is varied. Section Ill is devoted to the characteriza-
interconnected elements. Instances of such systems are osdibn of this critical phenomenon, which is a kind of first
lating catalytic surface reactionig], neural networkg3,4],  order phase transition. Finally, results are summarized and
and allosteric enzymic reactiofis]. discussed in Sec. IV.

Forms of collective behavior produced by global coupling
have been well characterized in the case of systems formed |, gL OBAL COUPLING OF BISTABLE ELEMENTS
by limit-cycle oscillators. In these systems, long-range inter-
actions can give rise to synchronized oscillatiph$]. This Consider a set dfl identical elements, each of them char-
kind of ordered entrained evolution—which has been ob-acterized by a state variabig(t), with —1<x;<1. In the
served in systems formed by either identical or slightly dif-absence of coupling the individual dynamics is bistable, and
ferent elements—is part of a wide class of possible behavior#ie evolution ofx; is governed by the equation
with nontrivial features, including clustering, chaotic collec-
tive dynamics, and desynchronizatiph8].

Although much attention has recently been paid to these

sets of globally coupled oscillators, a full understanding of . . .
the role of global coupling in the dynamics of extended com-W.hICh _correspond; to overdamped motion in Fhe one-
mensional potentiaV(x)= —x?/2+x*/4. The solution to

plex systems—to the levels already reached in the case (1) is
diffusive coupling—will require one to study other types of 9
local dynamics. In particular, one should be interested in s 1
characterizing the forms of collective evolution that occur in X(t)=sgr(xo)[1—(1—x0) “exp(—20)] 7% (2)
systems of elements whose individual dynamics differ from
limit-cycle oscillations. In this spirit, this paper is devoted to with x,=Xx(0). During the evolutionx(t) preserves its sign,
the analysis of the evolution of a set of globally coupledand approaches the asymptotic valle...=sgno) = *1.
bistable elements. This should be relevant to the study ofhe stationary state=0 is unstable.
spin systemg9] and neural network$10], where closely Global coupling is now introduced in the usual wi,
related models have already been considered. as a term describing relaxation towards the mean value
Models of coupled bistable elements have been addressedt) =N"12;x;(t):

X=X—x3, (1)
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X =x;— X3+ k(x—x;) = (1= k)x; + kx=x>. 3 (
a)
In the following, the(positive coupling constank is re-
stricted to the interval0,1]. In fact, as shown below, the
behavior of the coupled system far=1 is essentially the
same as for larger values of the coupling constant. For large o
k, the evolution proceeds in two well-defined stages. Up to
t~k ™1, the effect of coupling is dominant and eachrap-
idly approaches the mean valugt). From then on, the
coupled set evolves coherently—i.e., the statgs) of all
the elements coincide, andt) =x;(t) for all i. The subse-
guent behavior is thus mainly governed by the individual
dynamics, and the whole set approaches one of the two
stable states. Note that, as in the evolution of a single ele-
ment, this asymptotic state is selected by the initial condi-
tion.

In the case ok=1, Eq.(3) reduces to

time

X=x—x2. (4)

Letr =x;—x; be the difference between the states of any two
elements in the system and, without loss of generality, sup- 7
poser>0. According to Eq(4), this quantity satisfies (b)

. 2 4 6
r=—r(x+xx+x%). (5) {ime
Now, since —1<x;,x;<1, the inequalities r¥4<x’

+Xin+Xj2$3 hold and, at each time, FIG. 1. Temporal evolution of the coordinategt) for a set of

bistable elements with random homogeneous initial distribution,
_ r3 —1<x;(0)<1, and two values of the coupling constafa), k=0
—3rsr=-— e (6) and(b) k=1. For clarity, only 16 curves are displayed in each plot.

system qualitatively reproduces the evolution of the set of
The inequality signs are invertedri&0. In the ¢,r) plane, uncoupled elementkE&0). In fact, depending on the initial
therefore, the trajectory corresponding to the solution of Eqdistribution of the coordinate;, all the elements converge
(5) must lie between the graphs of the functions appearing iito one of the extreme values= + 1—as when, fok=0, all
Eg. (6), which intersect each other at=0. As a conse- the coordinates have the same sign—or become divided into
quence,r vanishes fort—o. Hence, fork=1 the coupled two groups, which approach two different values of the
elements evolve coherently and a single asymptotic value gfoordinate—as when, fde=0, both signs are present in the
X; is approached for all. initial  distribution. The coupled system is therefore
In agreement with these results, numerical calculationsbistable” in the sense that two qualitatively different
show that, folk=1, the system converges to coherent behavasymptotic states can be observed, depending on the inital
ior as time elapses. On the other hand,Ker0 each element condition: either the elements behave coherently, all of them
evolves independently according to Hf) and, from a ge- approaching the same final state, or they are divided into two
neric initial condition, the set becomes divided into two groups. On the other hand, as stated above, for larger values
groups, each of them approaching one of the two stablef k only coherent behavior is observed.
states. Figure 1 shows the evolution of a set of higtable The transition between bistable and coherent behavior is
elements in the casés=0 andk=1—although, for the sake characterized by a stability change in the possible asymptotic
of clarity, only 1@ trajectories are plotted. Both plots corre- States of the whole system. Suppose that, as the system
spond to exactly the same initial uniform random distributionevolves, theN elements are divided into two groups. One of
in(—1,1). them, containinggN elements (6<p<1) approaches the co-
The qualitative change in the evolution betwéen0 and  ordinateX,, whereas the other, with (1p)N elements, ap-
k=1 suggests that some kind of transition between both beProachesX,. It has to be stressed that the value mpfis
haviors should occur at some intermediate value of the coudetermined—in a nontrivial way—»by the initial condition.
pling constant. This transition is characterized in the follow-According to Eq.(3), the following identities should hold as
ing. N—oo:
— 3
Ill. TRANSITION BETWEEN BISTABLE 0=(1=k)Xy tk[pXy+(1=p)Xp] = X1, @
AND COHERENT BEHAVIOR .
According to numerical calculations, for sufficiently small 0=(171X A kpXa t (17p)Xo] =5
values of the coupling constant the global behavior of theNote that the case of coherent evolution can be taken into
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FIG. 2. Solutions to Eqg7) for p=0.55 and B<k< 1. Full dots FIG. 3. Phase diagram in the k) plane. The curve divides the

and lines correspond to stable solutions whereas empty dots armbnes of bistability—where according to the initial condition, the

dashed lines stand for unstable states. The arrows indicate the diet of elements is divided into two groups or approaches a single

rection of growingk. value ofx;—and of coherent behavior, where all the elements are
always attracted to the same state.

account by puttingX;=X,. The solutions to Eqs(7) are, ) . -

therefore, the whole set of stationary states of the couple’e boundary between the regions of bistability and coher-

system. Their stability can be studied from H@) in the  €nce given by Eq(8) has been plotted. _

standard linear approximation. A characterization of this transition in terms of a single
Independently of the value qf, Egs.(7) have nine solu- o_rder parameter is achieved by mt_rod_ucmg the mean square

tions. The trivial one, X;,X,)=(0,0), is unstable. The re- displacement of the asymptotic distribution of coordinates

maining eight solutions can be grouped into symmetricak; with respect to their mean valu¥=pX;+(1—p)X,,

pairs, (X;,X,) and (—X;,—X,), both with the same stabil- namely,

ity properties. It is therefore enough to analyze, for instance,

the four solutions with X;=0. (i) The first one,

(X1,X2)=(1,1), is stable and corresponds to the asymptotic o= \p(X;—X)2+(1—p)(Xo— X)2=p(1—p)|X;— X,|.

state of coherent evolutiortii) The second solution is real (9)

for all k. It approaches the unstable solution {Q,) for

k—0 and the trivial solution (0,0) fok=1. This solutionis  Figyre 4 shows the value ef as a function ok, for fixed

unstable for allk. (iii) Another solution, which is also un- p. Solid (dashel lines stand for stabléunstabl¢ states; the

stable for allk, approaches the unstable solution (1,0) asorizontal axis o=0 corresponds to the stable states

k—0. (iv) Finally, there is a stable solution that approachesxlzxzz +1. The dependence of on k suggests classify-

(1,—1) ask—0. This solution corresponds to the state injnq the transition between bistable to coherent behavior as a
which the elements have become divided into two subsets.gpcritical first order transition. Note, however, that, since

Figure 2 shows the numerical calculation of the pairs
(X1,X5) given by Eq.(7) for p=0.55 as the coupling con-
stant varies fok=0 to k=1. Arrows indicate the direction
of increasingk. Solid (dashegllines and solidopen circles

stand for stabléunstable equilibrium states. 081
As the coupling constant grows, there is a critical value
k. at which the two solutiongiii) and (iv) “collide” and 06|

become complex. At this critical value, then, the solution in
which the whole set becomes divided into two groups dissa- ©
pears. The value df; is related top according to

p=10.55
1= 4k, — 182p -+ 18P+ 27K4p? — 5AKp*+ 27Kp*.  (8) T
Thus, for a given value op—which is determined by the L T of4 ' of6 " os 1.0
initial condition—andk<k. two qualitatively different be- ' k

haviors can occur, as suggested by the numerical simula-

tions. EitherX;=X,=+*1 and the system evolves coher-  FiG. 4. Mean square dispersion for the solutions to @gwith
ently, or X;#X, and the elements are divided into two p=0.55, as a function of the coupling constanfull (dotted lines
groups. Fork>k,, instead, only the coherent evolution is correspond to stabléunstablé states. Coherent evolution corre-
possible. Figure 3 shows a phase diagtawersusp, where  sponds tor=0.
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coherent behavior is stable for any value of the coupling 10
constant, hysteresis effects cannot occur.
As already stated, the ratipsand 1- p into which the set
of coupled elements is divided into the bistable regime de-
pend in a nontrivial way—which, unfortunately, cannot be
fully described in analytical terms—on the initial condition. -
In order to illustrate this dependence, consider a set of ele-
ments initially distributed at random, according to a prob-
ability distribution given by

Py =055 k=045
0 2 4 6 8 10

1-pg for —1<x;<0 lime
P(x)= Po for 0<x;<1, (10

with 0<pgy<<1l. In this initial condition, a fractionpg ——
(1—py) of the elements have positivaegative coordinate. 0.5 =
In the absence of coupling, then, the asymptotic distribution

corresponds t@= p,. 0.0

Note that forpy=1/2 the symmetry of the whole problem 5
implies that, in the limitN— oo, the distribution of elements
is symmetric along the entire evolution. In particular, 0SS
x(t)=0 for all t. As stated before, however, this state is 4 Po=0.55,k=0.55
unstable fork>k|,_1,~0.67. Therefore, for any finite -L0g . . . . -

value of N and fork>k,, the (statistical symmetry of the time

initial condition will break down as time elapses and the
mean valuex will asymptotically approach a nonvanishing
value,x=*+1. Global coupling is thus able to amplify the
microscopic fluctuations in the homogenendhist random
initial distribution, giving rise to an asymmetry at the mac-
roscopic level.

In Fig. 5 the evolution of a set of #@oupled elements is
displayed forpy=0.55 and two values df. Both plots show  system is therefore “bistable.” Above this value, instead,
107 trajectories only, evolving from the same initial condi- when the coupling is strong enough, only coherent behavior
tion. Fork=0.45, the asymptotic valup~0.58 is reached. s possible. The transition between bistable and coherent
For p=0.58 the critical value of the coupling constant is evolution is similar to a first-order phase transition.
ke~0.48. In fact, Fig. ) shows that, fok=0.55, the sys- Coherent evolution of the bistable elements is qualita-
tem behaves coherently. tively similar to the synchronization observed in globally

Finally, Fig. 6 shows the results of a series of numericalcoupled limit-cycle oscillators. In both cases, a sufficiently
calculations in which a set of #@oupled elements was built strong coupling forces each element to become entrained in
according to the initial conditioi10). The asymptotic value the average motion of the set. Dissipative effects then make
of the ratiop was determined as a function of the coupling
constant, averaging over some?I@alizations of the initial 10

FIG. 5. Temporal evolution of the coordinategt) for a set of
bistable elements with random initial distribution as given in Eqg.
(10) for py=0.55 and two values of the coupling constatd)
k=0.45 and(b) k=0.55. For clarity, only 1®curves are displayed
in each plot.

condition for each value gf, andk. As indicated before, the /./
value of p, coincides with the value op obtained for 09 beeseossesee®
k=0. The sharp transition to coherent behavipr=(1) at a
critical value ofk is apparent. 081 va
..'_.“..OOQ. l
IV. SUMMARY AND DISCUSSION N 0.7 pesece "..'/
In this paper, the noiseless dynamics of a set of globally 06 SYTITLLL AL veesese’
coupled identical bistable elements has been considered. The cossssstsbosseese /.
coupling mechanism is a kind of mean-field diffusionlike 0.5Feeescessisisoscecsscrsscasce®ec®e e
process, already considered in the literature in connection ) '
() " 1 " s 1 n 1 n n ] " 1

with other types of individual dynamics, especially oscilla- A0 0l 02 03 04 05 o068 07 03
tors and excitable elemenf4,2,4,6—8. It has been shown

that the elements can either become divided into two groups, k
which approach two different states, or behave coherently
and evolve towards a completely homogeneous state. Below FIG. 6. Asymptotic value op as a function ok for different

a certain critical value for the coupling constant, and dependvalues ofp,. Each dot has been obtained from an average over
ing on the initial condition, both behaviors can occur and the~ 1 realizations of the initial condition for a set of 18lements.
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the system evolve as a single element. Thus, an importampinion formation and social decision making. Suppose that,
common feature in the evolution of coherent bistable eleat a certain moment in the future, a social group has to opt
ments and synchronized limit-cycle oscillators is that, as detween two instances by means of individual voting. In the
consequence of global coupling, the details of the individuahbsence of interaction between individuals, it is most likely
dynamics are manifested at a macroscopic level. that a person will maintain his or her present preference for

Since the coupling mechanism considered here is a kindne of the options up to the moment of the election—just as,
of long-range diffusion process, it is worthwhile to comparein the absence of coupling, the variabigt) preserves its
the present results with those corresponding to a system @ign along the whole evolution. Nowadays, however, indi-
bistable elements coupled through near-neighbor, ordinaryidual opinion is strongly exposed to the influence of mass
diffusion. Such a system is described by the real Ginzburgeommunication mediq15]. In the best(fairesh cases, this
Landau equation influence occurs through the publication of opinion surveys

and polls during the period previous to the electif]. No
doubt, mass media provide a class of global interaction be-
IX=DVIx+x—x3, (1) tween individuals and, under its action, a plausible assump-
tion is that the individual opinion is to some extent driven by
where the diffusivityD plays the role of coupling constant. the average opinion. This assumption is precisely described
This equation is widely used as a description of the orderby the kind of global coupling considered here.
parameter dynamics of second-order phase transfioHsit This interpretation of the model of globally coupled
is well known that the Ginzburg-Landau equation predictsbistable elements inspires the proposal of several generaliza-
the formation of spatial domains where the fietdr,t) tions that are indeed worth considering. For instance, it
adopts one of the two stables values + 1. A plane isolated would be interesting to analyze the effect of an asymmetry in
domain wall is in principle stationary but, by interaction be- the potential of Eq(1), such that only one stationary state is
tween neighboring walls, the domains change their form{ruly stable whereas the other becomes metastable. This in-
move, and eventually, after a long time, coalesce in a homatinsic preference for one of the states can be compared with
geneous state, which involves the whole system. the evolution in the bistable symmetric potential from an

The phase separation observed in the Ginzburg-Landagsymmetric initial condition, as described by Eg0). The
equation is in principle analogous to the division in two question on the equivalence between these two sources of
groups of elements observed in the globally coupled systerasymmetry—the potential or the initial condition—arises
for k<k.. However, two important differences exist. In the then quite naturally. A second generalization, which is cer-
first place, global coupling forces the asymptotic state oftainly relevant to the model of opinion formation, is to admit
each element to differ from the stable states of isolated elethe possibility that the coupling constant is not the same for
ments,x;=*1. Second, the long-range character of globaldll the elements, but is chosen at random for each element
interactions does not allow domain formation, i.e., spatiafffom a prescribed distribution. In physical models, this form
ordering, which is instead a typical feature in systems driverPf quenched disorder would represent some kind of spatial
by ordinary diffusion. On the other hand, when the couplinginhomogeneity. To the author's knowledge, the effects of
constant is greater than the critical vakyg the whole set of inhomogeneities in the coupling strength has not been con-
elements form a single domain in a time comparable to thgidered, up to this moment, in the literature on globally
temporal scales of individual evolution. coupled systems.

Besides this connection with the theory of second-order
spatially inhomogeneous critical phenomena, as mentioned
in the Introduction, the present model of globally coupled
bistable elements is related to the description of spin systems The author thanks A.S. Mikhailov for useful discussions
and neural networks. This relation has already been disand the Fritz Haber Institut for their warm hospitality. This
cussed in the literaturg9,10]. Beyond these applications to work has been partially supported by Alexander von Hum-
physical systems, the model could also be useful in the studygoldt Stiftung, Germany, and by Fundagiéntorchas, Ar-
of a sociological problem, namely, the problem of public gentina.
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